Perspectivity, special cleanness and chains of idempotents

Xavier Mary ${ }^{a}$, with Pace P. Nielsen ${ }^{b}$ and Dinesh Khuruna ${ }^{c}$
(a) Université Paris Nanterre, Laboratoire Modal'X
(b) Brigham Young University
(c) Panjab University

The case of unit-regular rings

Theorem (Fuchs, Kaplansky, Handelman, Camillo, Khurana) Let R be a regular ring. Then the following statements are equivalent:

1. R is unit-regular;
2. isomorphic idempotents have isomorphic complements;
3. elements of R are special clean;
4. R has stable range 1 ;
5. R is perspective;
6. $\mathcal{M}_{2}(R)$ has perspectivity transitive.

General case?

Objective:

We consider the interplay between the following notions in the general setting:

1. Perspectivity of direct summands;
2. element-wise properties of regular elements (or endomorphisms);
3. Relations between Idempotents.

(Some) Questions:

1. Is there an element-wise characterization of perspectivity?
2. Is there a characterization based on idempotents?
3. Can we characterize rings where all regular elements are special clean?
4. If R is IC and perspectivity is transitive, is R perspective?

Perspectivity in modules

Let M be a module, $A, B \subseteq^{\oplus} M$ (A, B direct summands). We note \bar{A} and \bar{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B(A, B$ are perspective $)$ if $A \oplus C=M=B \oplus C$ for some $C \subseteq \subseteq^{\oplus} M$;

Perspectivity in modules

Let M be a module, $A, B \subseteq \subseteq^{\oplus} M(A, B$ direct summands). We note \bar{A} and \bar{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B(A, B$ are perspective $)$ if $A \oplus C=M=B \oplus C$ for some $C \subseteq{ }^{\oplus} M$;
- Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\bar{A} \simeq \bar{B}$;

Perspectivity in modules

Let M be a module, $A, B \subseteq \subseteq^{\oplus} M(A, B$ direct summands). We note \bar{A} and \bar{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B(A, B$ are perspective) if $A \oplus C=M=B \oplus C$ for some $C \subseteq{ }^{\oplus} M$;
- Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\bar{A} \simeq \bar{B}$;
- The module M is perspective if for any two $A, B \subseteq \subseteq^{\oplus} M$, $A \simeq B \Rightarrow A \sim_{\oplus} B ;$

Perspectivity in modules

Let M be a module, $A, B \subseteq{ }^{\oplus} M(A, B$ direct summands). We note \bar{A} and \bar{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B(A, B$ are perspective) if $A \oplus C=M=B \oplus C$ for some $C \subseteq{ }^{\oplus} M$;
- Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\bar{A} \simeq \bar{B}$;
- The module M is perspective if for any two $A, B \subseteq \oplus\left(\begin{array}{l} \\ \end{array}\right.$, $A \simeq B \Rightarrow A \sim_{\oplus} B ;$
- The module M is 3/2-perspective if for any two $A, B \subseteq{ }^{\oplus} M$ and any complementary summand \bar{A} of A, $A \simeq B \Rightarrow \bar{A} \sim_{\oplus} \bar{B}$ for some complementary summand of $B ;$

Perspectivity in modules

Let M be a module, $A, B \subseteq{ }^{\oplus} M(A, B$ direct summands). We note \bar{A} and \bar{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B(A, B$ are perspective) if $A \oplus C=M=B \oplus C$ for some $C \subseteq{ }^{\oplus} M$;
- Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\bar{A} \simeq \bar{B}$;
- The module M is perspective if for any two $A, B \subseteq \oplus\left(\begin{array}{l} \\ \end{array}\right.$, $A \simeq B \Rightarrow A \sim_{\oplus} B ;$
- The module M is 3/2-perspective if for any two $A, B \subseteq \subseteq^{\oplus} M$ and any complementary summand \bar{A} of A, $A \simeq B \Rightarrow \bar{A} \sim_{\oplus} \bar{B}$ for some complementary summand of B;
- The module M has perspectivity transitive if $A \sim_{\oplus} B \sim_{\oplus} C \Rightarrow A \sim_{\oplus} C$.

Perspectivity and IC (internal cancellation)

M is IC if for any two $A, B \subseteq M$ and $\bar{A}, \bar{B}, A \simeq B \Rightarrow \bar{A} \simeq \bar{B}$, that is

$$
A \oplus \bar{A}=M=B \oplus \bar{B} \text { et } A \simeq B \Rightarrow \bar{A} \simeq \bar{B} .
$$

Any perspective module is $3 / 2$-perspective, and any $3 / 2$-perspective module is IC.

From modules to rings

Definition
A ring R is perspective (resp. $3 / 2, \mathrm{IC}$) if the right module R_{R} is (iff ${ }_{R} R$ is).

Theorem ("ER"-property)
M is perspective (resp. 3/2, IC) iff the endomorphism ring $R=\operatorname{End}(M)$ is.
Therefore, we can study R instead of M.

Regular and (special) clean elements, idempotents

- $a \in R$ is regular (resp. unit-regular) if $a u a=a$ for some $u \in R$ (resp. u invertible). We note $\operatorname{reg}(R)$ (resp. $\operatorname{ureg}(R))$ the set of regular (resp. unit-regular) elements, and $V(a)=\{b \in R \mid a b a=a, b a b=b\}$ for the set of reflexive inverses of a;

Regular and (special) clean elements, idempotents

- $a \in R$ is regular (resp. unit-regular) if $a u a=a$ for some $u \in R$ (resp. u invertible). We note $\operatorname{reg}(R)$ (resp. $\operatorname{ureg}(R))$ the set of regular (resp. unit-regular) elements, and $V(a)=\{b \in R \mid a b a=a, b a b=b\}$ for the set of reflexive inverses of a;
- a is clean if $a=\bar{e}+u$ for some $u \in U(R)$ and $e \in E(R)$.

Regular and (special) clean elements, idempotents

- $a \in R$ is regular (resp. unit-regular) if $a u a=a$ for some $u \in R$ (resp. u invertible). We note $\operatorname{reg}(R)$ (resp. $\operatorname{ureg}(R))$ the set of regular (resp. unit-regular) elements, and $V(a)=\{b \in R \mid a b a=a, b a b=b\}$ for the set of reflexive inverses of a;
- a is clean if $a=\bar{e}+u$ for some $u \in U(R)$ and $e \in E(R)$.
- a is special clean if $a=\bar{e}+u$ for some $u \in U(R)$ such that $e \in E(R) a R \cap \bar{e} R=0$, iff $a=\bar{e}+u=a u^{-1} a$ for some $u \in U(R)$ and $e \in E(R)$;

Regular and (special) clean elements, idempotents

- $a \in R$ is regular (resp. unit-regular) if $a u a=a$ for some $u \in R$ (resp. u invertible). We note $\operatorname{reg}(R)$ (resp. ureg (R)) the set of regular (resp. unit-regular) elements, and $V(a)=\{b \in R \mid a b a=a, b a b=b\}$ for the set of reflexive inverses of a;
- a is clean if $a=\bar{e}+u$ for some $u \in U(R)$ and $e \in E(R)$.
- a is special clean if $a=\bar{e}+u$ for some $u \in U(R)$ such that $e \in E(R) a R \cap \bar{e} R=0$, iff $a=\bar{e}+u=a u^{-1} a$ for some $u \in U(R)$ and $e \in E(R)$;
- $e, f \in E(R)$ are isomorphic idempotents if $e R \simeq f R$ iff $e=a b, f=b a$ for some $a, b \in R$ (and we can choose $a b a=a, b a b=b) ;$

Regular and (special) clean elements, idempotents

- $a \in R$ is regular (resp. unit-regular) if $a u a=a$ for some $u \in R$ (resp. u invertible). We note $\operatorname{reg}(R)$ (resp. ureg (R)) the set of regular (resp. unit-regular) elements, and $V(a)=\{b \in R \mid a b a=a, b a b=b\}$ for the set of reflexive inverses of a;
- a is clean if $a=\bar{e}+u$ for some $u \in U(R)$ and $e \in E(R)$.
- a is special clean if $a=\bar{e}+u$ for some $u \in U(R)$ such that $e \in E(R) a R \cap \bar{e} R=0$, iff $a=\bar{e}+u=a u^{-1} a$ for some $u \in U(R)$ and $e \in E(R)$;
- $e, f \in E(R)$ are isomorphic idempotents if $e R \simeq f R$ iff $e=a b, f=b a$ for some $a, b \in R$ (and we can choose $a b a=a, b a b=b)$;
- if $e \in E(R)$ we note $\bar{e}=1$ - e its complementary idempotent.

Perspective elements

$a \in R$ is right perspective if a is regular and any complementary summand of $r_{R}(a)=\{x \in R \mid a x=0\}$ is perspective with $a R$.

Perspective elements

$a \in R$ is right perspective if a is regular and any complementary summand of $r_{R}(a)=\{x \in R \mid a x=0\}$ is perspective with $a R$.

Theorem

Let $a \in \operatorname{reg}(R)$. Then the following statements are equivalent:

1. (Def.) a is right perspective;
2. ($a R, b R$) For any $b \in V(a), a R$ and $b R$ are perspective;
3. ((Special) Clean) For any $f \in E(R)$ such that $R a=R f$, then $a=\bar{e}+u$ for some $u \in U(R), e \in E(R)$ such that $e R=f R$ (and the decomposition is actually special clean);
4. (Idempotent) for any $b \in V(a)$, there exists $e, g \in E(R)$ such that

$$
(a b) R=g R, R g=R e \text { and } e R=(b a) R .
$$

Left-right symmetry of perspective elements

We can define the dual notion of left perspective elements.

Left-right symmetry of perspective elements

We can define the dual notion of left perspective elements.

Theorem (Left-right symmetry)

Right perspective elements and left perspective elements coincide.
(The proof actually relies on a result due to D. Khurana, P.P. Nielsen and X. Mary on chains of idempotents that will be defined shortly)

Example: Group invertible elements (in particular units or idempotents) are perspective.

Chains of idempotents
Let $e, f \in E(R)$. Then $e R=f R \Leftrightarrow e f=f, f e=e$.

Chains of idempotents

Let $e, f \in E(R)$. Then $e R=f R \Leftrightarrow e f=f, f e=e$. We note:

- $e \sim_{r} f$ if $e f=f, f e=f(e, f$ right associates);
- $e \sim_{\ell} f$ if $e f=e, f e=f$;
- $e \sim_{r \ell} f$ if $e \sim_{r} g \sim_{\ell} f$ for some $g \in E(R)$, and so on...

Chains of idempotents

Let $e, f \in E(R)$. Then $e R=f R \Leftrightarrow e f=f, f e=e$. We note:

- $e \sim_{r} f$ if $e f=f, f e=f(e, f$ right associates);
- $e \sim_{\ell} f$ if $e f=e, f e=f$;
- $e \sim_{r \ell} f$ if $e \sim_{r} g \sim_{\ell} f$ for some $g \in E(R)$, and so on...

Definition (Right n-chains)
Let $e, f \in E(R) . e, f$ are right n-chained if
$e=g_{0} \sim_{r} g_{1} \sim_{\ell} \cdots g_{n}=f$ for some $g_{1}, \cdots, g_{n} \in R$.
For instance, e, f are right 3 -chained if $e \sim_{r \ell_{r}} f$.
We say that R satisfies $\mathcal{P}(n)$ if any two isomorphic idempotents are right n-chained.

We recall:

Theorem (Khurana, Lam)

The following statements are equivalent:

1. R is $/ C$;
2. $\operatorname{reg}(R)=\operatorname{ureg}(R)$;
3. For any $e, f \in E(R), e \simeq f \Rightarrow \bar{e} \simeq \bar{f}$.

We recall:

Theorem (Khurana, Lam)

The following statements are equivalent:

1. R is $/ C$;
2. $\operatorname{reg}(R)=\operatorname{ureg}(R)$;
3. For any $e, f \in E(R), e \simeq f \Rightarrow \bar{e} \simeq \bar{f}$.

It holds that:

Theorem

The following statements are equivalent:

1. R is perspective;
2. Regular elements are perspective;
3. For any $e, f \in E(R), e \simeq f \Rightarrow e \sim_{r \ell r} f$ (R satisfies $\mathcal{P}(3)$);
4. For any $e, f \in E(R), e \simeq f \Rightarrow\left\{e \sim_{r \ell r} f\right.$ or $\left.e \sim_{l r \ell} f\right\}$.

Theorem

The following statements are equivalent:

1. R is $3 / 2$-perspective;
2. Regular elements are special clean;
3. For any $e, f \in E(R)$, $e \simeq f \Rightarrow e \sim_{r \ell \ell l} f(R$ satisfies $\mathcal{P}(4))$.

We do not know if this is equivalent to the a priori weaker version:
For any $e, f \in E(R), e \simeq f \Rightarrow\left\{e \sim_{r \ell r \ell} f\right.$ or $\left.e \sim_{\ell r \ell r} f\right\}$.
Theorem
R has perspectivity transitive iff for all $e, f \in E(R)$,
$e \sim_{r \ell r} f \Rightarrow e \sim_{\ell r \ell} f$.

Two "interesting" IC rings

Let $D=\mathbb{Z}$ and $S=T^{-1} D$ the localisation of D in T, where T is the multiplicative close of prime numbers p such that $p \equiv \pm 1(\bmod 8)$.

1. S has not stable range 1 ;

Two "interesting" IC rings

Let $D=\mathbb{Z}$ and $S=T^{-1} D$ the localisation of D in T, where T is the multiplicative close of prime numbers p such that $p \equiv \pm 1(\bmod 8)$.

1. S has not stable range 1 ;
2. We form the two matrix rings

$$
R_{2}=\left(\begin{array}{cc}
S & 2 S \\
2 S & S
\end{array}\right) \text { and } R_{4}=\left(\begin{array}{cc}
S & 4 S \\
4 S & S
\end{array}\right)
$$

- R_{2}, R_{4} are IC;
- R_{2}, R_{4} are IC;
- Neither R_{2} nor R_{4} is perspective;
- R_{2}, R_{4} are IC;
- Neither R_{2} nor R_{4} is perspective;
- Using Dirichlet's theorem on prime numbers in arithmetic progression, we can prove that R_{2} is $3 / 2$-perspective and that R_{4} has perspectivity transitive.

3/2-perspective rings are actually abundant

Theorem

1. Let S be any nontrivial localization of \mathbb{Z}. Then under a Generalized Riemann Hypothesis, $\mathcal{M}_{2}(S)$ satisfies $\mathcal{P}(4)$ (R is 3/2-perspective, all its regular elements special clean) (and $\mathcal{P}(5)$ without GRH);

3/2-perspective rings are actually abundant

Theorem

1. Let S be any nontrivial localization of \mathbb{Z}. Then under a Generalized Riemann Hypothesis, $\mathcal{M}_{2}(S)$ satisfies $\mathcal{P}(4)$ (R is 3/2-perspective, all its regular elements special clean) (and $\mathcal{P}(5)$ without GRH);
2. Let S be a projective-free ring with $n \geq 2$ in its stable range. If $m \geq 4 n-5$, then $R=\mathcal{M}_{m}(S)$ satisfies $\mathcal{P}(4)$. If S has not stable range $1, R$ is not perspective;

3/2-perspective rings are actually abundant

Theorem

1. Let S be any nontrivial localization of \mathbb{Z}. Then under a Generalized Riemann Hypothesis, $\mathcal{M}_{2}(S)$ satisfies $\mathcal{P}(4)$ (R is 3/2-perspective, all its regular elements special clean) (and $\mathcal{P}(5)$ without GRH);
2. Let S be a projective-free ring with $n \geq 2$ in its stable range. If $m \geq 4 n-5$, then $R=\mathcal{M}_{m}(S)$ satisfies $\mathcal{P}(4)$. If S has not stable range $1, R$ is not perspective;
3. For instance $\mathcal{M}_{m}(\mathbb{Z})$ is $3 / 2$-perspective but not perspective for all $m \geq 3$.

Thank you for your attention.
E. S. Garg, H. K. Grover, and D. Khurana, Perspective rings, J. Algebra 415 (2014), 1-12.
E. D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra 48 (1977), no. 1, 1-16.
E. D. Khurana and T. Y. Lam, Rings with internal cancellation, J. Algebra 284 (2005), no. 1, 203-235.
E. Dinesh Khurana, Xavier Mary, and Pace P Nielsen, Idempotent chains and bounded generation of $S L_{2}$, in preparation.
E. Dinesh Khurana and Pace P Nielsen, Transitivity of perspectivity, Algebras and Representation Theory (2021), 1-7.
E. Xavier Mary, n/2-perspective modules, semigroups and rings, submitted.

E \qquad On special clean and perspective elements and rings, submitted.
E. Xavier Mary and Pace P Nielsen, IC rings and transitivity of perspectivity, Journal of Algebra and Its Applications (2021), 2250151.

