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The case of unit-regular rings

Theorem (Fuchs, Kaplansky, Handelman, Camillo, Khurana)
Let R be a regular ring. Then the following statements are
equivalent:

1. R is unit-regular;
2. isomorphic idempotents have isomorphic complements;
3. elements of R are special clean;
4. R has stable range 1;
5. R is perspective;
6. M2(R) has perspectivity transitive.
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General case?

Objective:
We consider the interplay between the following notions in the
general setting:

1. Perspectivity of direct summands;
2. element-wise properties of regular elements (or

endomorphisms);
3. Relations between Idempotents.
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(Some) Questions:
1. Is there an element-wise characterization of perspectivity?
2. Is there a characterization based on idempotents?
3. Can we characterize rings where all regular elements are

special clean?
4. If R is IC and perspectivity is transitive, is R perspective?
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Perspectivity in modules

Let M be a module, A,B ⊆⊕ M (A,B direct summands). We
note Ā and B̄ any two complementary summands of A and B.

◦ A ∼⊕ B (A,B are perspective) if A⊕ C = M = B ⊕ C for
some C ⊆⊕ M ;

◦ Observe: if A ∼⊕ B, then A ≃ B and Ā ≃ B̄;
◦ The module M is perspective if for any two A,B ⊆⊕ M ,
A ≃ B ⇒ A ∼⊕ B;

◦ The module M is 3/2-perspective if for any two A,B ⊆⊕ M
and any complementary summand Ā of A,
A ≃ B ⇒ Ā ∼⊕ B̄ for some complementary summand of B;

◦ The module M has perspectivity transitive if
A ∼⊕ B ∼⊕ C ⇒ A ∼⊕ C.
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Perspectivity and IC (internal cancellation)

M is IC if for any two A,B ⊆⊕ M and Ā, B̄, A ≃ B ⇒ Ā ≃ B̄,
that is

A⊕ Ā = M = B ⊕ B̄ et A ≃ B ⇒ Ā ≃ B̄.

Any perspective module is 3/2-perspective, and any
3/2-perspective module is IC.
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From modules to rings

Definition
A ring R is perspective (resp. 3/2, IC) if the right module RR is
(iff RR is).

Theorem (“ER”-property)
M is perspective (resp. 3/2, IC) iff the endomorphism ring
R = End(M) is.
Therefore, we can study R instead of M .
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Regular and (special) clean elements, idempotents

◦ a ∈ R is regular (resp. unit-regular) if aua = a for some
u ∈ R (resp. u invertible). We note reg(R) (resp. ureg(R))
the set of regular (resp. unit-regular) elements, and
V (a) = {b ∈ R|aba = a, bab = b} for the set of reflexive
inverses of a;

◦ a is clean if a = ē+ u for some u ∈ U(R) and e ∈ E(R).
◦ a is special clean if a = ē+ u for some u ∈ U(R) such that
e ∈ E(R) aR ∩ ēR = 0, iff a = ē+ u = au−1a for some
u ∈ U(R) and e ∈ E(R);

◦ e, f ∈ E(R) are isomorphic idempotents if eR ≃ fR iff
e = ab, f = ba for some a, b ∈ R (and we can choose
aba = a, bab = b);

◦ if e ∈ E(R) we note ē = 1− e its complementary idempotent.
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Perspective elements
a ∈ R is right perspective if a is regular and any complementary
summand of rR(a) = {x ∈ R|ax = 0} is perspective with aR.

Theorem
Let a ∈ reg(R). Then the following statements are equivalent:

1. (Def.) a is right perspective;
2. (aR, bR) For any b ∈ V (a), aR and bR are perspective;
3. ((Special) Clean) For any f ∈ E(R) such that Ra = Rf ,

then a = ē+ u for some u ∈ U(R), e ∈ E(R) such that
eR = fR (and the decomposition is actually special clean);

4. (Idempotent) for any b ∈ V (a), there exists e, g ∈ E(R)
such that

(ab)R = gR,Rg = Re and eR = (ba)R.
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Left-right symmetry of perspective elements

We can define the dual notion of left perspective elements.

Theorem (Left-right symmetry)
Right perspective elements and left perspective elements coincide.
(The proof actually relies on a result due to D. Khurana, P.P.
Nielsen and X. Mary on chains of idempotents that will be defined
shortly)

Example: Group invertible elements (in particular units or
idempotents) are perspective.
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Chains of idempotents

Let e, f ∈ E(R). Then eR = fR ⇔ ef = f, fe = e.

We note:
◦ e ∼r f if ef = f, fe = f (e, f right associates);
◦ e ∼ℓ f if ef = e, fe = f ;
◦ e ∼rℓ f if e ∼r g ∼ℓ f for some g ∈ E(R), and so on...

Definition (Right n-chains)
Let e, f ∈ E(R). e, f are right n-chained if
e = g0 ∼r g1 ∼ℓ · · · gn = f for some g1, · · · , gn ∈ R.
For instance, e, f are right 3-chained if e ∼rℓr f .

We say that R satisfies P(n) if any two isomorphic idempotents
are right n-chained.
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We recall:
Theorem (Khurana, Lam)
The following statements are equivalent:

1. R is IC;
2. reg(R) = ureg(R);
3. For any e, f ∈ E(R), e ≃ f ⇒ ē ≃ f̄ .

It holds that:
Theorem
The following statements are equivalent:

1. R is perspective;
2. Regular elements are perspective;
3. For any e, f ∈ E(R), e ≃ f ⇒ e ∼rℓr f (R satisfies P(3));
4. For any e, f ∈ E(R), e ≃ f ⇒ {e ∼rℓr f or e ∼ℓrℓ f}.
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Theorem
The following statements are equivalent:

1. R is 3/2-perspective;
2. Regular elements are special clean;
3. For any e, f ∈ E(R), e ≃ f ⇒ e ∼rℓrℓ f (R satisfies P(4)).

We do not know if this is equivalent to the a priori weaker version:
For any e, f ∈ E(R), e ≃ f ⇒ {e ∼rℓrℓ f or e ∼ℓrℓr f}.
Theorem
R has perspectivity transitive iff for all e, f ∈ E(R),
e ∼rℓr f ⇒ e ∼ℓrℓ f .
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Two “interesting” IC rings

Let D = Z and S = T−1D the localisation of D in T , where T is
the multiplicative close of prime numbers p such that
p ≡ ±1(mod 8).

1. S has not stable range 1;

2. We form the two matrix rings

R2 =

(
S 2S
2S S

)
and R4 =

(
S 4S
4S S

)
.
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◦ R2, R4 are IC;

◦ Neither R2 nor R4 is perspective;
◦ Using Dirichlet’s theorem on prime numbers in arithmetic

progression, we can prove that R2 is 3/2-perspective and that
R4 has perspectivity transitive.
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3/2-perspective rings are actually abundant

Theorem
1. Let S be any nontrivial localization of Z. Then under a

Generalized Riemann Hypothesis, M2(S) satisfies P(4) (R is
3/2-perspective, all its regular elements special clean) (and
P(5) without GRH);

2. Let S be a projective-free ring with n ≥ 2 in its stable range.
If m ≥ 4n− 5, then R = Mm(S) satisfies P(4). If S has not
stable range 1, R is not perspective;

3. For instance Mm(Z) is 3/2-perspective but not perspective
for all m ≥ 3.
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Thank you for your attention.
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