Perspectivity, special cleanness and chains of idempotents

Xavier Mary^a, with Pace P. Nielsen^b and Dinesh Khuruna^c (a) Université Paris Nanterre, Laboratoire Modal'X (b) Brigham Young University (c) Panjab University

0 0 0 0

Theorem (Fuchs, Kaplansky, Handelman, Camillo, Khurana) Let R be a **regular** ring. Then the following statements are equivalent:

- **1.** *R* is unit-regular;
- 2. isomorphic idempotents have isomorphic complements;
- **3.** elements of R are special clean;
- **4.** *R* has stable range 1;
- **5.** R is perspective;
- **6.** $\mathcal{M}_2(R)$ has perspectivity transitive.

0 0 0 0 0

General case?

Objective:

We consider the interplay between the following notions in the general setting:

- 1. Perspectivity of direct summands;
- element-wise properties of regular elements (or endomorphisms);
- **3.** Relations between **Idempotents**.

(Some) Questions:

- **1.** Is there an element-wise characterization of perspectivity?
- 2. Is there a characterization based on idempotents?
- **3.** Can we characterize rings where all regular elements are special clean?
- **4.** If *R* is IC and perspectivity is transitive, is *R* perspective?

Let M be a module, $A, B \subseteq^{\oplus} M$ (A, B direct summands). We note \overline{A} and \overline{B} any two complementary summands of A and B. $\circ A \sim_{\oplus} B$ (A, B are *perspective*) if $A \oplus C = M = B \oplus C$ for some $C \subseteq^{\oplus} M$;

Let M be a module, $A, B \subseteq^{\oplus} M$ (A, B direct summands). We note \overline{A} and \overline{B} any two complementary summands of A and B. $\circ A \sim_{\oplus} B$ (A, B are *perspective*) if $A \oplus C = M = B \oplus C$ for

- some $C \subseteq^{\oplus} M$;
- \circ Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\bar{A} \simeq \bar{B}$;

Let M be a module, $A, B \subseteq^{\oplus} M$ (A, B direct summands). We note \overline{A} and \overline{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B$ (A, B are *perspective*) if $A \oplus C = M = B \oplus C$ for some $C \subseteq^{\oplus} M$;
- \circ Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $ar{A} \simeq ar{B}$;
- The module M is *perspective* if for any two $A, B \subseteq^{\oplus} M$, $A \simeq B \Rightarrow A \sim_{\oplus} B$;

0 0 0

Let M be a module, $A, B \subseteq^{\oplus} M$ (A, B direct summands). We note \overline{A} and \overline{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B$ (A, B are *perspective*) if $A \oplus C = M = B \oplus C$ for some $C \subseteq^{\oplus} M$;
- \circ Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\overline{A} \simeq \overline{B}$;
- The module M is *perspective* if for any two $A, B \subseteq^{\oplus} M$, $A \simeq B \Rightarrow A \sim_{\oplus} B$;
- The module M is 3/2-perspective if for any two $A, B \subseteq^{\oplus} M$ and any complementary summand \overline{A} of A,

 $A \simeq B \Rightarrow A \sim_{\oplus} B$ for some complementary summand of B;

Let M be a module, $A, B \subseteq^{\oplus} M$ (A, B direct summands). We note \overline{A} and \overline{B} any two complementary summands of A and B.

- $A \sim_{\oplus} B$ (A, B are *perspective*) if $A \oplus C = M = B \oplus C$ for some $C \subseteq^{\oplus} M$;
- Observe: if $A \sim_{\oplus} B$, then $A \simeq B$ and $\overline{A} \simeq \overline{B}$;
- The module M is *perspective* if for any two $A, B \subseteq^{\oplus} M$, $A \simeq B \Rightarrow A \sim_{\oplus} B$;
- The module M is 3/2-perspective if for any two $A, B \subseteq^{\oplus} M$ and any complementary summand \overline{A} of A, $A \simeq B \Rightarrow \overline{A} \sim_{\oplus} \overline{B}$ for some complementary summand of B;
- The module M has perspectivity transitive if $A \sim_{\oplus} B \sim_{\oplus} C \Rightarrow A \sim_{\oplus} C$.

Perspectivity and IC (internal cancellation)

 \overline{M} is IC if for any two $\overline{A}, B \subseteq^{\oplus} M$ and $\overline{A}, \overline{B}, A \simeq B \Rightarrow \overline{A} \simeq \overline{B}$, that is

 $A \oplus \overline{A} = M = B \oplus \overline{B}$ et $A \simeq B \Rightarrow \overline{A} \simeq \overline{B}$.

Any perspective module is 3/2-perspective, and any 3/2-perspective module is IC.

From modules to rings

Definition A ring R is perspective (resp. 3/2, IC) if the right module R_R is (iff $_RR$ is). **Theorem ("ER"-property)** M is perspective (resp. 3/2, IC) iff the endomorphism ring R = End(M) is. Therefore, we can study R instead of M.

0 0 0 0

• $a \in R$ is regular (resp. unit-regular) if aua = a for some $u \in R$ (resp. u invertible). We note reg(R) (resp. ureg(R)) the set of regular (resp. unit-regular) elements, and $V(a) = \{b \in R | aba = a, bab = b\}$ for the set of reflexive inverses of a;

• $a \in R$ is regular (resp. unit-regular) if aua = a for some $u \in R$ (resp. u invertible). We note reg(R) (resp. ureg(R)) the set of regular (resp. unit-regular) elements, and $V(a) = \{b \in R | aba = a, bab = b\}$ for the set of reflexive inverses of a;

• *a* is *clean* if $a = \overline{e} + u$ for some $u \in U(R)$ and $e \in E(R)$.

- $a \in R$ is regular (resp. unit-regular) if aua = a for some $u \in R$ (resp. u invertible). We note reg(R) (resp. ureg(R)) the set of regular (resp. unit-regular) elements, and $V(a) = \{b \in R | aba = a, bab = b\}$ for the set of reflexive inverses of a;
- *a* is *clean* if $a = \overline{e} + u$ for some $u \in U(R)$ and $e \in E(R)$.
- a is special clean if $a = \overline{e} + u$ for some $u \in U(R)$ such that $e \in E(R)$ $aR \cap \overline{e}R = 0$, iff $a = \overline{e} + u = au^{-1}a$ for some $u \in U(R)$ and $e \in E(R)$;

- $a \in R$ is regular (resp. unit-regular) if aua = a for some $u \in R$ (resp. u invertible). We note reg(R) (resp. ureg(R)) the set of regular (resp. unit-regular) elements, and $V(a) = \{b \in R | aba = a, bab = b\}$ for the set of reflexive inverses of a;
- a is *clean* if $a = \overline{e} + u$ for some $u \in U(R)$ and $e \in E(R)$.
- a is special clean if $a = \overline{e} + u$ for some $u \in U(R)$ such that $e \in E(R)$ $aR \cap \overline{e}R = 0$, iff $a = \overline{e} + u = au^{-1}a$ for some $u \in U(R)$ and $e \in E(R)$;
- $e, f \in E(R)$ are *isomorphic idempotents* if $eR \simeq fR$ iff e = ab, f = ba for some $a, b \in R$ (and we can choose aba = a, bab = b);

- $a \in R$ is regular (resp. unit-regular) if aua = a for some $u \in R$ (resp. u invertible). We note reg(R) (resp. ureg(R)) the set of regular (resp. unit-regular) elements, and $V(a) = \{b \in R | aba = a, bab = b\}$ for the set of reflexive inverses of a;
- a is *clean* if $a = \overline{e} + u$ for some $u \in U(R)$ and $e \in E(R)$.
- a is special clean if $a = \overline{e} + u$ for some $u \in U(R)$ such that $e \in E(R)$ $aR \cap \overline{e}R = 0$, iff $a = \overline{e} + u = au^{-1}a$ for some $u \in U(R)$ and $e \in E(R)$;
- $e, f \in E(R)$ are *isomorphic idempotents* if $eR \simeq fR$ iff e = ab, f = ba for some $a, b \in R$ (and we can choose aba = a, bab = b);
- if $e \in E(R)$ we note $\overline{e} = 1 \overline{e}$ its complementary idempotent.

Perspective elements

 $a \in R$ is *right perspective* if a is regular and any complementary summand of $r_R(a) = \{x \in R | ax = 0\}$ is perspective with aR.

0 0 0 0 0

Perspective elements

 $a \in R$ is *right perspective* if a is regular and any complementary summand of $r_R(a) = \{x \in R | ax = 0\}$ is perspective with aR. **Theorem**

Let $a \in reg(R)$. Then the following statements are equivalent: 1. (Def.) a is right perspective; 2. (aR, bR) For any $b \in V(a)$, aR and bR are perspective; 3. ((Special) Clean) For any $f \in E(R)$ such that Ra = Rf, then $a = \overline{e} + u$ for some $u \in U(R)$, $e \in E(R)$ such that eR = fR (and the decomposition is actually special clean); 4. (Idempotent) for any $b \in V(a)$, there exists $e, g \in E(R)$ such that

(ab)R = gR, Rg = Re and eR = (ba)R.

Left-right symmetry of perspective elements

We can define the dual notion of left perspective elements.

Left-right symmetry of perspective elements

We can define the dual notion of left perspective elements. **Theorem (Left-right symmetry)** *Right perspective elements and left perspective elements coincide.* (The proof actually relies on a result due to D. Khurana, P.P. Nielsen and X. Mary on chains of idempotents that will be defined shortly)

Example: Group invertible elements (in particular units or idempotents) are perspective.

Chains of idempotents

Let $e, f \in E(R)$. Then $eR = fR \Leftrightarrow ef = f, fe = e$.

0 0 0 0 0

Chains of idempotents

Let $e, f \in E(R)$. Then $eR = fR \Leftrightarrow ef = f, fe = e$. We note: $\circ e \sim_r f$ if ef = f, fe = f (e, f right associates); $\circ e \sim_{\ell} f$ if ef = e, fe = f; $\circ e \sim_{r\ell} f$ if $e \sim_r g \sim_{\ell} f$ for some $g \in E(R)$, and so on...

0 0 0 0 0

Chains of idempotents

Let $e, f \in E(R)$. Then $eR = fR \Leftrightarrow ef = f, fe = e$. We note: $\circ e \sim_r f$ if ef = f, fe = f (e, f right associates); $\circ e \sim_{\ell} f$ if ef = e, fe = f; $\circ e \sim_{r\ell} f$ if $e \sim_r q \sim_{\ell} f$ for some $q \in E(R)$, and so on... **Definition (Right** *n*-chains) Let $e, f \in E(R)$. e, f are right *n*-chained if $e = q_0 \sim_r q_1 \sim_\ell \cdots q_n = f$ for some $q_1, \cdots, q_n \in R$. For instance, e, f are right 3-chained if $e \sim_{r\ell r} f$.

We say that R satisfies $\mathcal{P}(n)$ if any two isomorphic idempotents are right n-chained.

We recall:

Theorem (Khurana, Lam) The following statements are equivalent: **1.** R is IC; **2.** reg(R) = ureg(R);**3.** For any $e, f \in E(R), e \simeq f \Rightarrow \bar{e} \simeq \bar{f}.$

We recall:

Theorem (Khurana, Lam) The following statements are equivalent: **1.** R is IC; **2.** reg(R) = ureg(R); **3.** For any $e, f \in E(R)$, $e \simeq f \Rightarrow \bar{e} \simeq \bar{f}$. It holds that: **Theorem**

The following statements are equivalent:

- **1.** R is perspective;
- 2. Regular elements are perspective;

3. For any $e, f \in E(R)$, $e \simeq f \Rightarrow e \sim_{r\ell r} f$ (R satisfies $\mathcal{P}(3)$);

4. For any $e, f \in E(R)$, $e \simeq f \Rightarrow \{e \sim_{r\ell r} f \text{ or } e \sim_{\ell r\ell} f\}$.

0 0 0

Theorem The following statements are equivalent:

- **1.** R is 3/2-perspective;
- 2. Regular elements are special clean;
- **3.** For any $e, f \in E(R)$, $e \simeq f \Rightarrow e \sim_{r\ell r\ell} f$ (R satisfies $\mathcal{P}(4)$).

We do not know if this is equivalent to the *a priori* weaker version: For any $e, f \in E(R)$, $e \simeq f \Rightarrow \{e \sim_{r\ell r\ell} f \text{ or } e \sim_{\ell r\ell r} f\}$.

Theorem

R has perspectivity transitive iff for all $e, f \in E(R)$, $e \sim_{r\ell r} f \Rightarrow e \sim_{\ell r\ell} f$.

0 0 0

Let $D = \mathbb{Z}$ and $S = T^{-1}D$ the localisation of D in T, where T is the multiplicative close of prime numbers p such that $p \equiv \pm 1 \pmod{8}$.

1. S has not stable range 1;

Let $D = \mathbb{Z}$ and $\overline{S = T^{-1}D}$ the localisation of D in T, where T is the multiplicative close of prime numbers p such that $p \equiv \pm 1 \pmod{8}$.

1. S has not stable range 1;

2. We form the two matrix rings

$$R_2 = \begin{pmatrix} S & 2S \\ 2S & S \end{pmatrix}$$
 and $R_4 = \begin{pmatrix} S & 4S \\ 4S & S \end{pmatrix}$

0 0 0 0 0

*R*₂, *R*₄ are IC; Neither *R*₂ nor *R*₄ is perspective;

• R_2, R_4 are IC;

• Neither R_2 nor R_4 is perspective;

• Using Dirichlet's theorem on prime numbers in arithmetic progression, we can prove that R_2 is 3/2-perspective and that R_4 has perspectivity transitive.

0 0 0 0

3/2-perspective rings are actually abundant

Theorem

1. Let *S* be any nontrivial localization of \mathbb{Z} . Then under a Generalized Riemann Hypothesis, $\mathcal{M}_2(S)$ satisfies $\mathcal{P}(4)$ (*R* is 3/2-perspective, all its regular elements special clean) (and $\mathcal{P}(5)$ without GRH);

0 0 0 0

3/2-perspective rings are actually abundant

Theorem

- Let S be any nontrivial localization of Z. Then under a Generalized Riemann Hypothesis, M₂(S) satisfies P(4) (R is 3/2-perspective, all its regular elements special clean) (and P(5) without GRH);
- **2.** Let *S* be a projective-free ring with $n \ge 2$ in its stable range. If $m \ge 4n - 5$, then $R = \mathcal{M}_m(S)$ satisfies $\mathcal{P}(4)$. If *S* has not stable range 1, *R* is not perspective;

3/2-perspective rings are actually abundant

Theorem

- Let S be any nontrivial localization of Z. Then under a Generalized Riemann Hypothesis, M₂(S) satisfies P(4) (R is 3/2-perspective, all its regular elements special clean) (and P(5) without GRH);
- **2.** Let *S* be a projective-free ring with $n \ge 2$ in its stable range. If $m \ge 4n - 5$, then $R = \mathcal{M}_m(S)$ satisfies $\mathcal{P}(4)$. If *S* has not stable range 1, *R* is not perspective;
- **3.** For instance $\mathcal{M}_m(\mathbb{Z})$ is 3/2-perspective but not perspective for all $m \geq 3$.

Thank you for your attention.

- S. Garg, H. K. Grover, and D. Khurana, *Perspective rings*, J. Algebra 415 (2014), 1–12.
- D. Handelman, Perspectivity and cancellation in regular rings,
 J. Algebra 48 (1977), no. 1, 1–16.
- D. Khurana and T. Y. Lam, *Rings with internal cancellation*, J. Algebra 284 (2005), no. 1, 203–235.
- Dinesh Khurana, Xavier Mary, and Pace P Nielsen, *Idempotent* chains and bounded generation of SL_2 , in preparation.
- Dinesh Khurana and Pace P Nielsen, Transitivity of perspectivity, Algebras and Representation Theory (2021), 1–7.
- Xavier Mary, n/2-perspective modules, semigroups and rings, submitted.

0 0 0 0

. On special clean and perspective elements and rings, submitted.

Xavier Mary and Pace P Nielsen, *IC rings and transitivity of perspectivity*, Journal of Algebra and Its Applications (2021), 2250151.

0 0 0 0